If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+17x-1=0
a = 16; b = 17; c = -1;
Δ = b2-4ac
Δ = 172-4·16·(-1)
Δ = 353
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-\sqrt{353}}{2*16}=\frac{-17-\sqrt{353}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+\sqrt{353}}{2*16}=\frac{-17+\sqrt{353}}{32} $
| -315=-5(-1+8v) | | 21=35a | | (7x+4)/8=3 | | 1=2,5a+(-5a+2) | | Y=4x-3/2x+1 | | (5a+2)(2a+1)=0 | | (5a+2)(2a+1)=10 | | x-(0.2x)=7.65 | | 2,5a+(-5a+2)=1 | | -83=-3-2(5-7p) | | 2x(1+x)^1/2+((x+1)(x-1))/2(x+1)^1/2=0 | | 2n+6(4+8n)=124 | | (2x-3)(7-5x)=-21 | | 7e+3=4e | | 5w=10/7 | | y+y+y=6 | | -(8x-1)-6x=85 | | 5y=5=7y-9 | | х^3-1.5x-3=0 | | 18=3/2u | | x²+15x=10 | | -119=-7(b+3) | | 3(3x-1)=51 | | 2(3-x)-5=3-(2+x | | ((2x-3)/3)+((3x-10)/2)=20 | | 25x+2=30x-13 | | 3/2×3=b | | 4=3/2×3+b | | 2(5x+5)=70 | | 9x-3(3x+2)=0 | | 205=-5x-5(7x+15) | | 6x16=13x-61 |